metabelian, supersoluble, monomial
Aliases: D6.6S32, Dic3.7S32, C3⋊D12⋊6S3, (S3×C6).12D6, C32⋊2Q8⋊5S3, C33⋊6(C4○D4), C33⋊9D4⋊9C2, C3⋊Dic3.32D6, C3⋊2(D12⋊S3), C3⋊3(D6.4D6), (C3×Dic3).12D6, (C32×C6).18C23, C33⋊5C4.6C22, C32⋊11(D4⋊2S3), C32⋊10(Q8⋊3S3), (C32×Dic3).6C22, C2.18S33, C6.18(C2×S32), (S3×C3⋊Dic3)⋊3C2, (Dic3×C3⋊S3)⋊2C2, (C2×C3⋊S3).33D6, (S3×C3×C6).9C22, (C3×C3⋊D12)⋊8C2, (C3×C32⋊2Q8)⋊6C2, (C6×C3⋊S3).22C22, (C3×C6).67(C22×S3), (C3×C3⋊Dic3).15C22, SmallGroup(432,611)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.6S32
G = < a,b,c,d,e | a6=b3=c2=1, d6=e2=a3, ab=ba, ac=ca, dad-1=eae-1=a-1, cbc=b-1, bd=db, be=eb, dcd-1=a3c, ce=ec, ede-1=a3d5 >
Subgroups: 1156 in 214 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C2×C4, D4, Q8, C32, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, D4⋊2S3, Q8⋊3S3, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, D6⋊S3, C3⋊D12, C3⋊D12, C32⋊2Q8, C3×Dic6, C3×D12, C3×C3⋊D4, C4×C3⋊S3, C2×C3⋊Dic3, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, C6×C3⋊S3, D12⋊S3, D6.4D6, C3×C3⋊D12, C3×C32⋊2Q8, S3×C3⋊Dic3, Dic3×C3⋊S3, C33⋊9D4, D6.6S32
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, D4⋊2S3, Q8⋊3S3, C2×S32, D12⋊S3, D6.4D6, S33, D6.6S32
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 23 21 19 17 15)(14 16 18 20 22 24)(25 35 33 31 29 27)(26 28 30 32 34 36)(37 47 45 43 41 39)(38 40 42 44 46 48)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 34)(2 29)(3 36)(4 31)(5 26)(6 33)(7 28)(8 35)(9 30)(10 25)(11 32)(12 27)(13 37)(14 44)(15 39)(16 46)(17 41)(18 48)(19 43)(20 38)(21 45)(22 40)(23 47)(24 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 24 7 18)(2 23 8 17)(3 22 9 16)(4 21 10 15)(5 20 11 14)(6 19 12 13)(25 39 31 45)(26 38 32 44)(27 37 33 43)(28 48 34 42)(29 47 35 41)(30 46 36 40)
G:=sub<Sym(48)| (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,40,42,44,46,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,34)(2,29)(3,36)(4,31)(5,26)(6,33)(7,28)(8,35)(9,30)(10,25)(11,32)(12,27)(13,37)(14,44)(15,39)(16,46)(17,41)(18,48)(19,43)(20,38)(21,45)(22,40)(23,47)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,7,18)(2,23,8,17)(3,22,9,16)(4,21,10,15)(5,20,11,14)(6,19,12,13)(25,39,31,45)(26,38,32,44)(27,37,33,43)(28,48,34,42)(29,47,35,41)(30,46,36,40)>;
G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,40,42,44,46,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,34)(2,29)(3,36)(4,31)(5,26)(6,33)(7,28)(8,35)(9,30)(10,25)(11,32)(12,27)(13,37)(14,44)(15,39)(16,46)(17,41)(18,48)(19,43)(20,38)(21,45)(22,40)(23,47)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,7,18)(2,23,8,17)(3,22,9,16)(4,21,10,15)(5,20,11,14)(6,19,12,13)(25,39,31,45)(26,38,32,44)(27,37,33,43)(28,48,34,42)(29,47,35,41)(30,46,36,40) );
G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4),(13,23,21,19,17,15),(14,16,18,20,22,24),(25,35,33,31,29,27),(26,28,30,32,34,36),(37,47,45,43,41,39),(38,40,42,44,46,48)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,34),(2,29),(3,36),(4,31),(5,26),(6,33),(7,28),(8,35),(9,30),(10,25),(11,32),(12,27),(13,37),(14,44),(15,39),(16,46),(17,41),(18,48),(19,43),(20,38),(21,45),(22,40),(23,47),(24,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24,7,18),(2,23,8,17),(3,22,9,16),(4,21,10,15),(5,20,11,14),(6,19,12,13),(25,39,31,45),(26,38,32,44),(27,37,33,43),(28,48,34,42),(29,47,35,41),(30,46,36,40)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | ··· | 12H | 12I |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 |
size | 1 | 1 | 6 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 6 | 6 | 18 | 27 | 27 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | 36 | 36 | 12 | ··· | 12 | 36 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | D6 | C4○D4 | S32 | S32 | D4⋊2S3 | Q8⋊3S3 | C2×S32 | D12⋊S3 | D6.4D6 | S33 | D6.6S32 |
kernel | D6.6S32 | C3×C3⋊D12 | C3×C32⋊2Q8 | S3×C3⋊Dic3 | Dic3×C3⋊S3 | C33⋊9D4 | C3⋊D12 | C32⋊2Q8 | C3×Dic3 | C3⋊Dic3 | S3×C6 | C2×C3⋊S3 | C33 | Dic3 | D6 | C32 | C32 | C6 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 3 | 4 | 2 | 1 | 1 |
Matrix representation of D6.6S32 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
11 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12],[11,6,0,0,0,0,0,0,6,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[3,4,0,0,0,0,0,0,4,10,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;
D6.6S32 in GAP, Magma, Sage, TeX
D_6._6S_3^2
% in TeX
G:=Group("D6.6S3^2");
// GroupNames label
G:=SmallGroup(432,611);
// by ID
G=gap.SmallGroup(432,611);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,64,254,135,58,298,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^3=c^2=1,d^6=e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,c*e=e*c,e*d*e^-1=a^3*d^5>;
// generators/relations